

Cardiff Business School

Ysgol Busnes Caerdydd

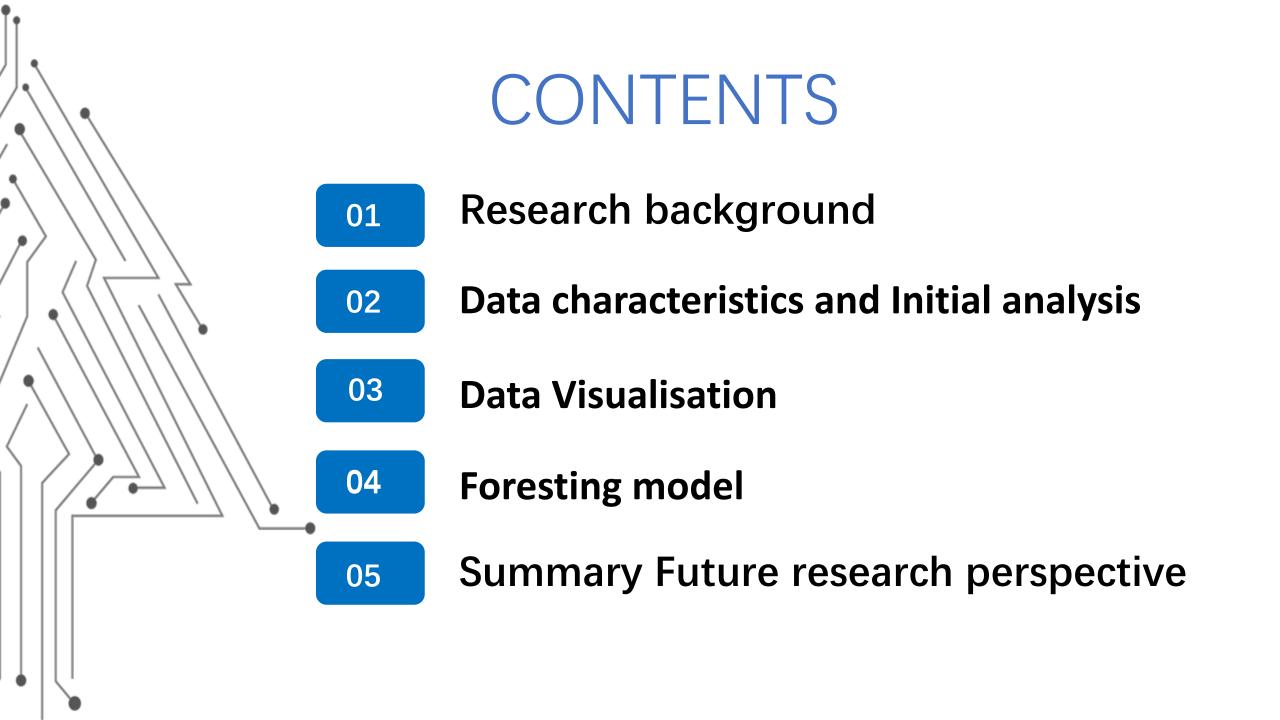
Forecasting length of stay in trauma network

<u>Presenter(PhD students)</u>:

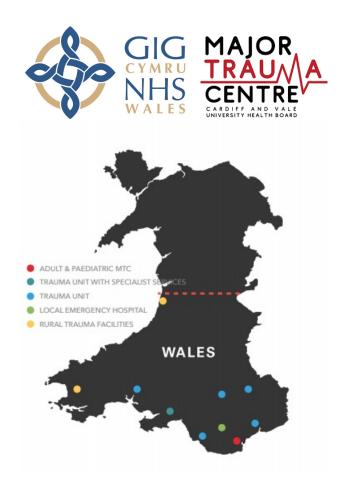
Zihao Wang WangZ121@cardiff.ac.uk

Supervision teams:

Bahman Rostami-TabarRostami-TabarRostami-TabarJane HaiderHaider@cardiff.ac.ukMohamed NaimNaimMM@cardiff.ac.uk



Introduction of trauma networks



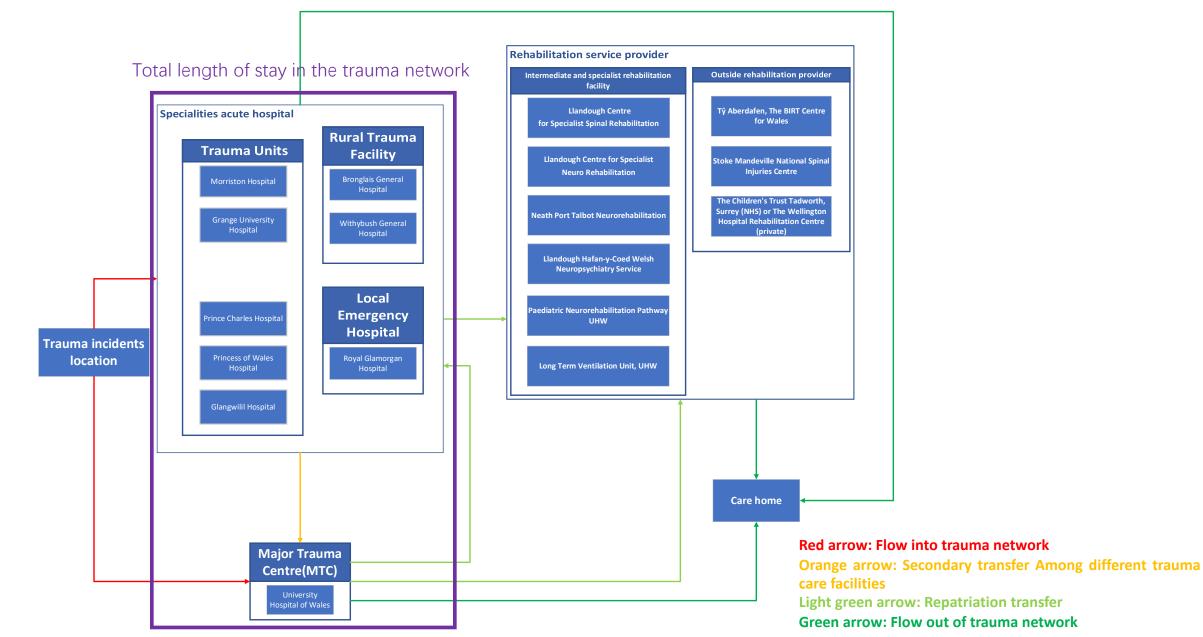
What is Trauma networks?

The collaboration between the health care providers to deliver trauma care services in a geographical area

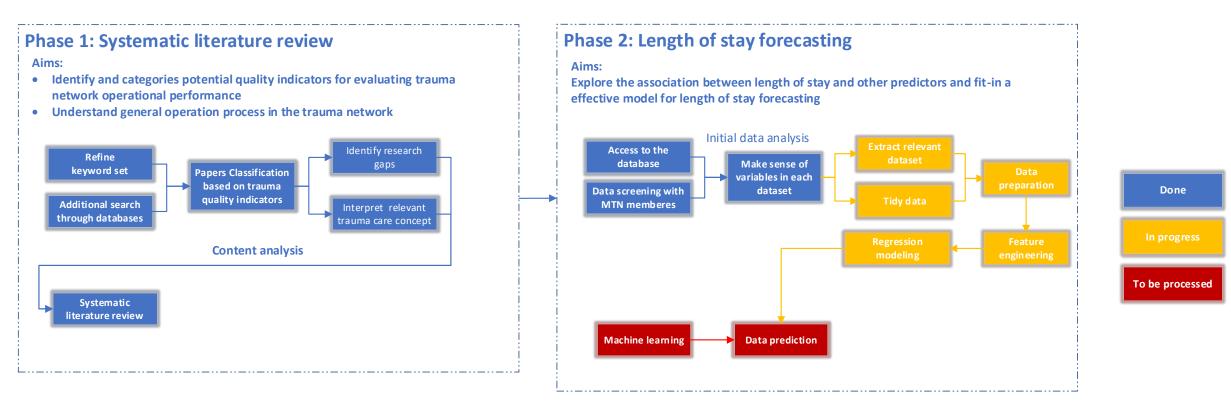
Why networks?

- Organizing trauma care has been a strong health care agenda in UK since the 2010.
- Trauma networks in London and other place of England have shown a significant reduction in mortality/ morbidity and improvements in functional outcome.

General patient flow in trauma network

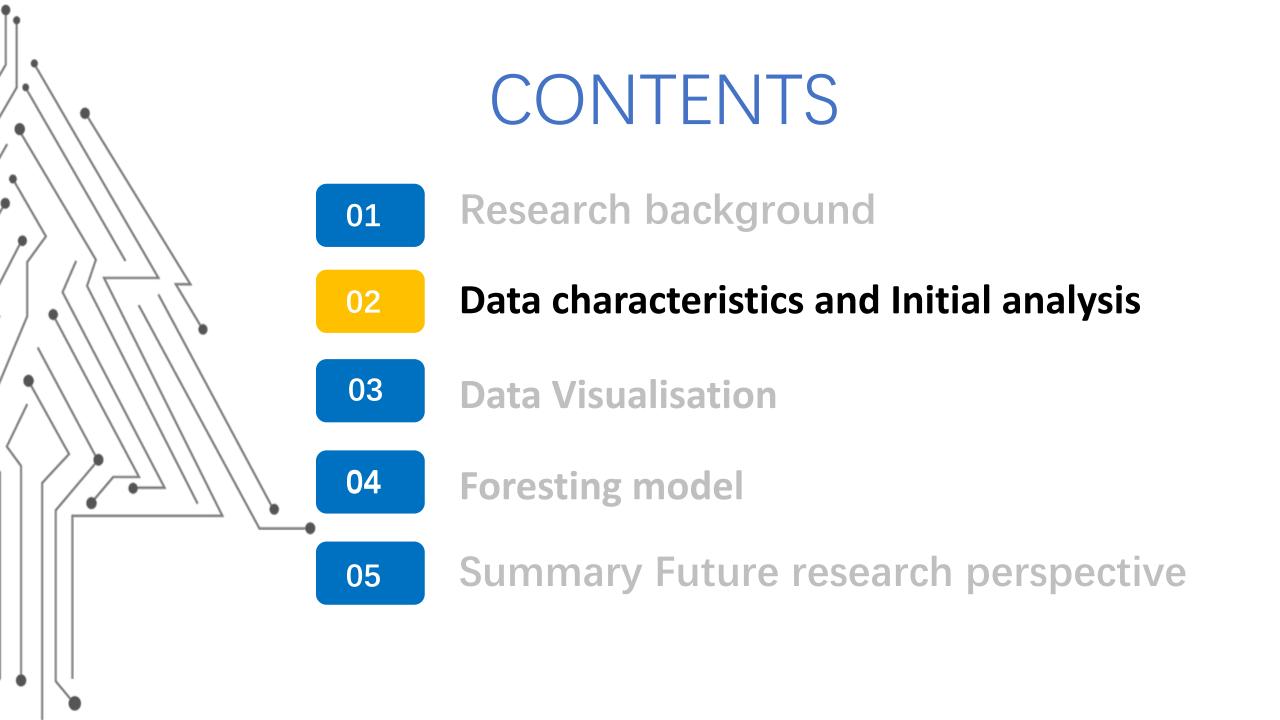


Previous work and Research objective



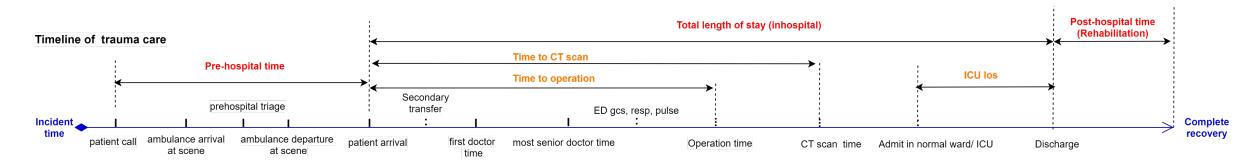
- Patient length of stay as a process indicator for evaluating the operation of trauma networks has rarely been explored.
- the clinical trauma interventions, patients' complications and discharge destination contribute to the variation of patients' length of stay within the trauma network (Moore 2018 et al.)

Long-term objective: the data-driven LOS forecasting model could provide analytical assumption to build the system dynamic model for simulating the patient flow in the whole trauma network

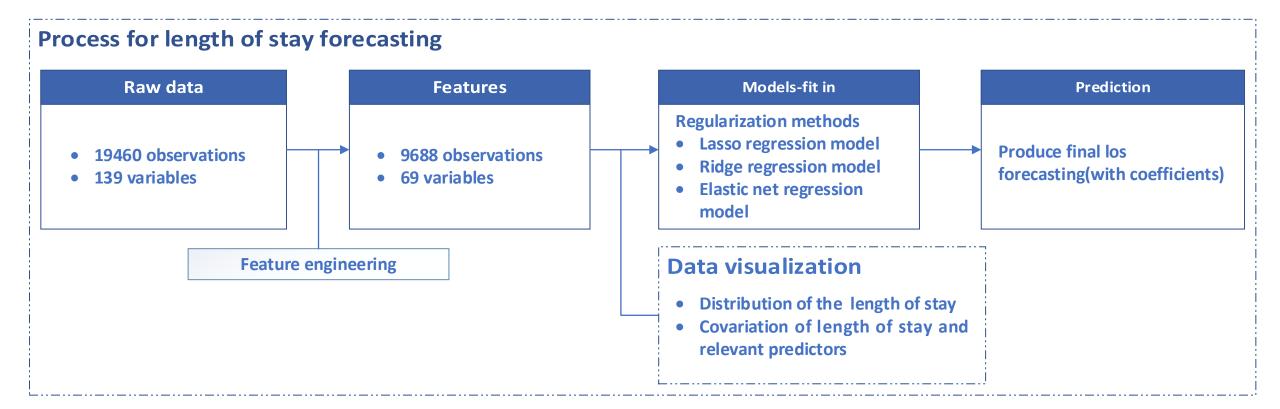


- Data acquisition and characteristics
 - Data Source

- Response variable : Total length of stay
- Predictors:
 - Categorical: age, gender, injury mechanism, transfer status, ward and Binary variables (Welsh incident, MTC,Operation…),
 - Numerical: ISS, ED&prehospital GCS, RESP, SBP, Pulse...
 - Time series: time points and interval in the trauma care process



— Data analysis process



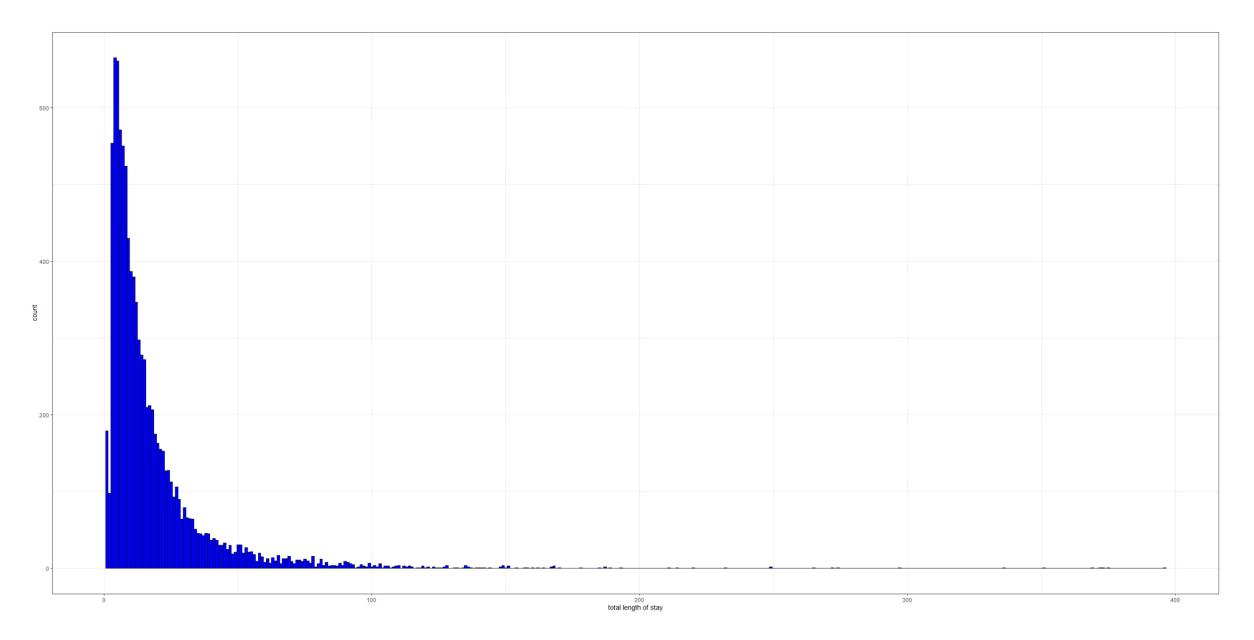
Feature engineering

- Correct the time format
- Remove column with complete rate less than 10%
- Deal with Null value:replace them with the rest of the categories of corresponding column or simply remove the entire column
- Remove abnormal and meaningless values("Not recorded", "Not applicable")
- Convert some columns into dummy variables

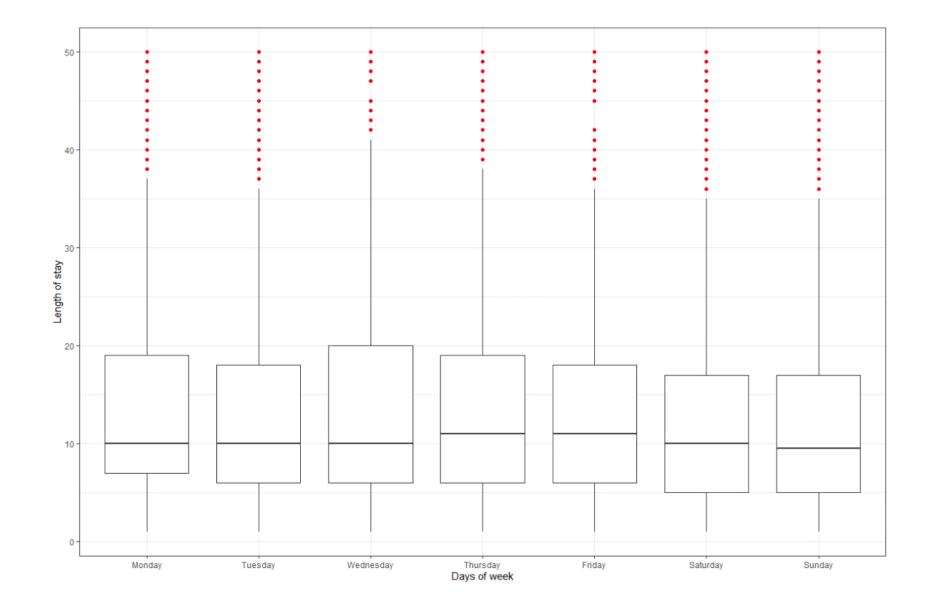
Poor data quality& Impact on the forecasting accuracy

- 60% of the observation was removed
- Lack of some important time interval feature(time to CT scan, operation)

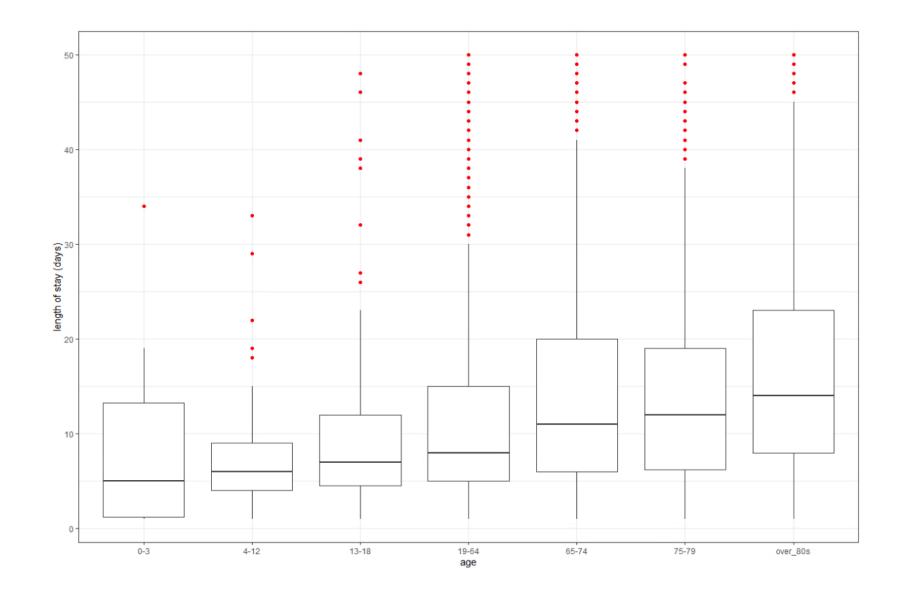
— Data visualization: Distribution of the total length of stay



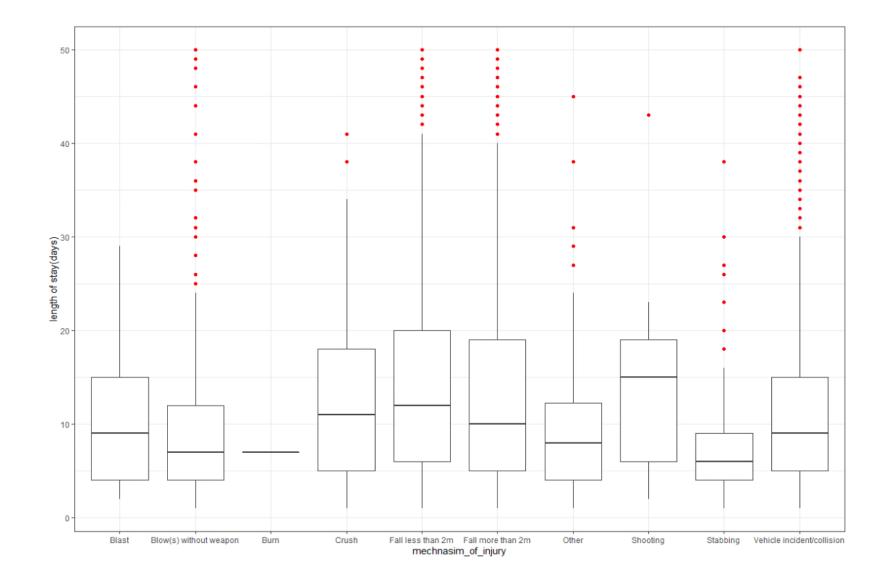
— Data visualization:Covariance between LOS & patient arrival date



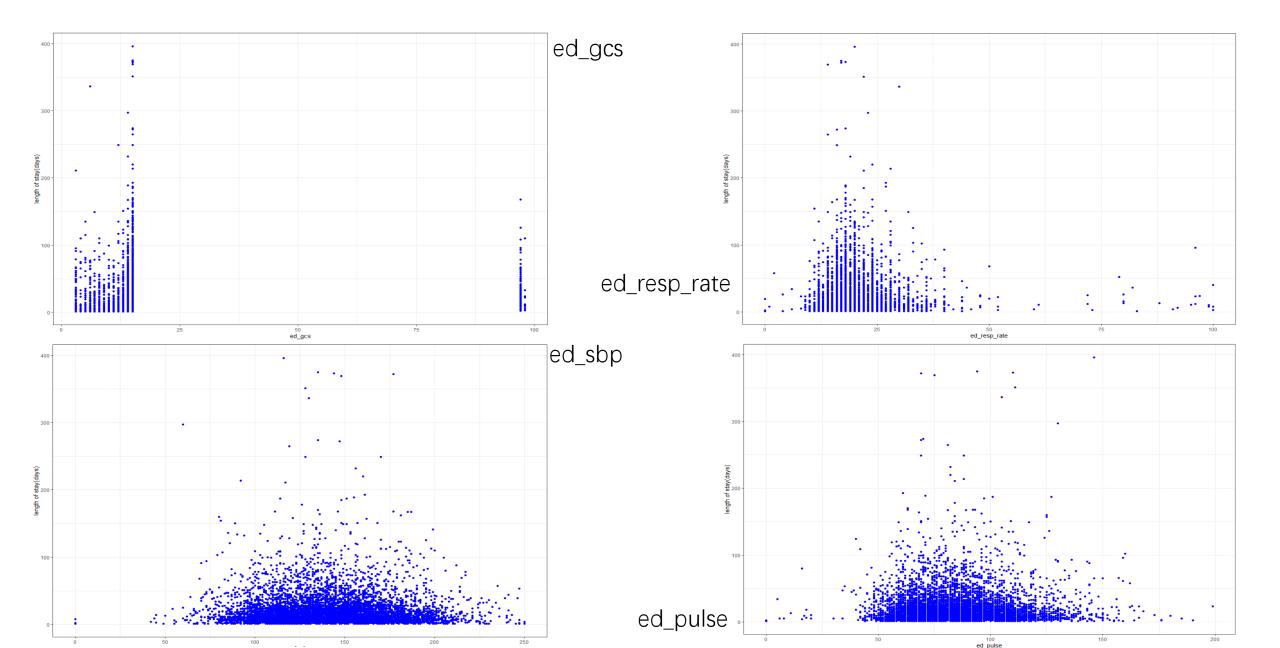
— Data visualization: Covariance between LOS & age groups



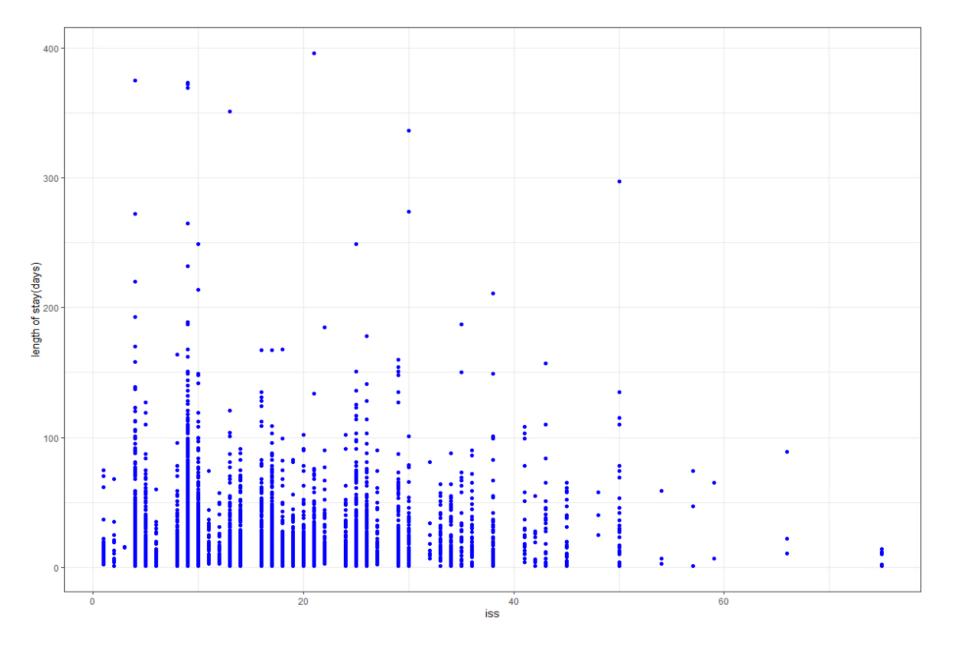
— Data visualization: Covariance between LOS & injury mechanism

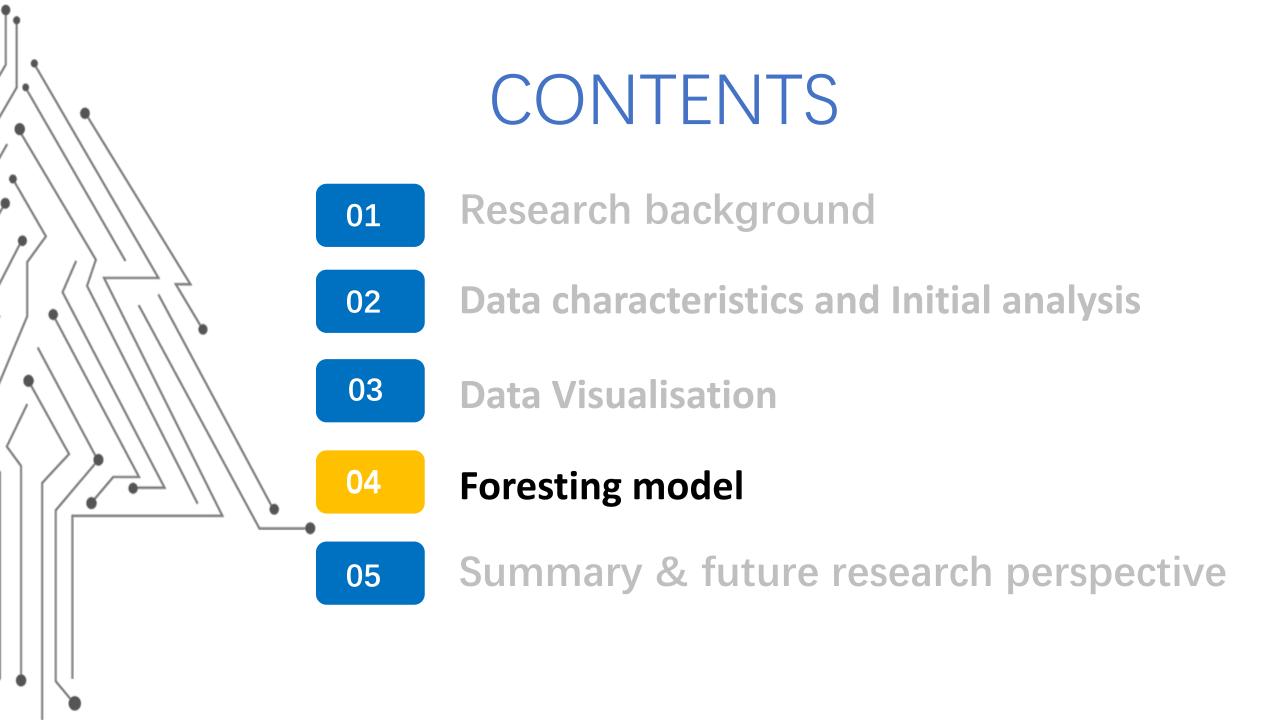


= Data visualization: Covariance between LOS & numeric features



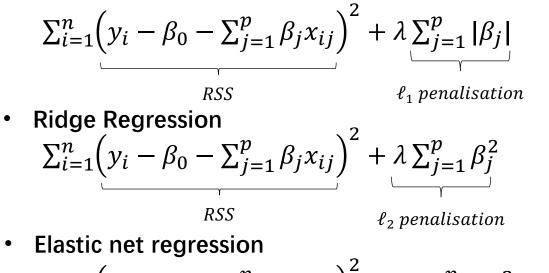
— Data visualization: Covariation between LOS & Injury severity score (ISS)





— Methodology :

Lasso Regression



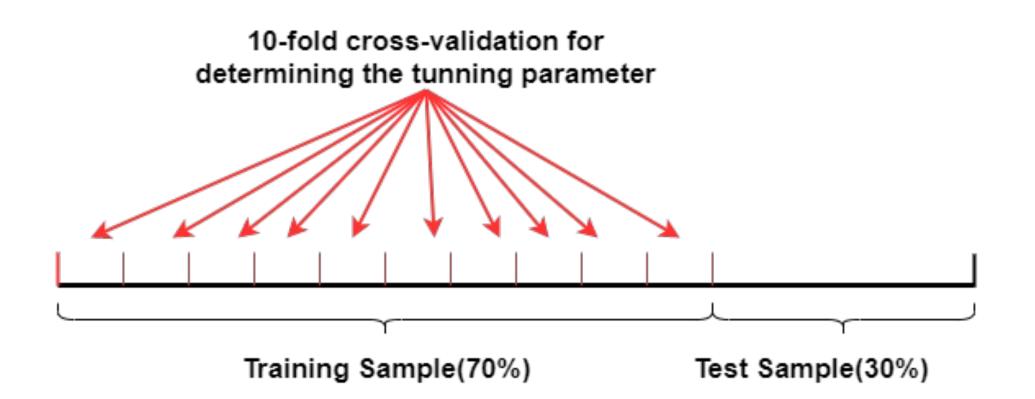
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda 1 \sum_{j=1}^{p} \beta_j^2 + \lambda 2 \sum_{j=1}^{p} |\beta_j|$$

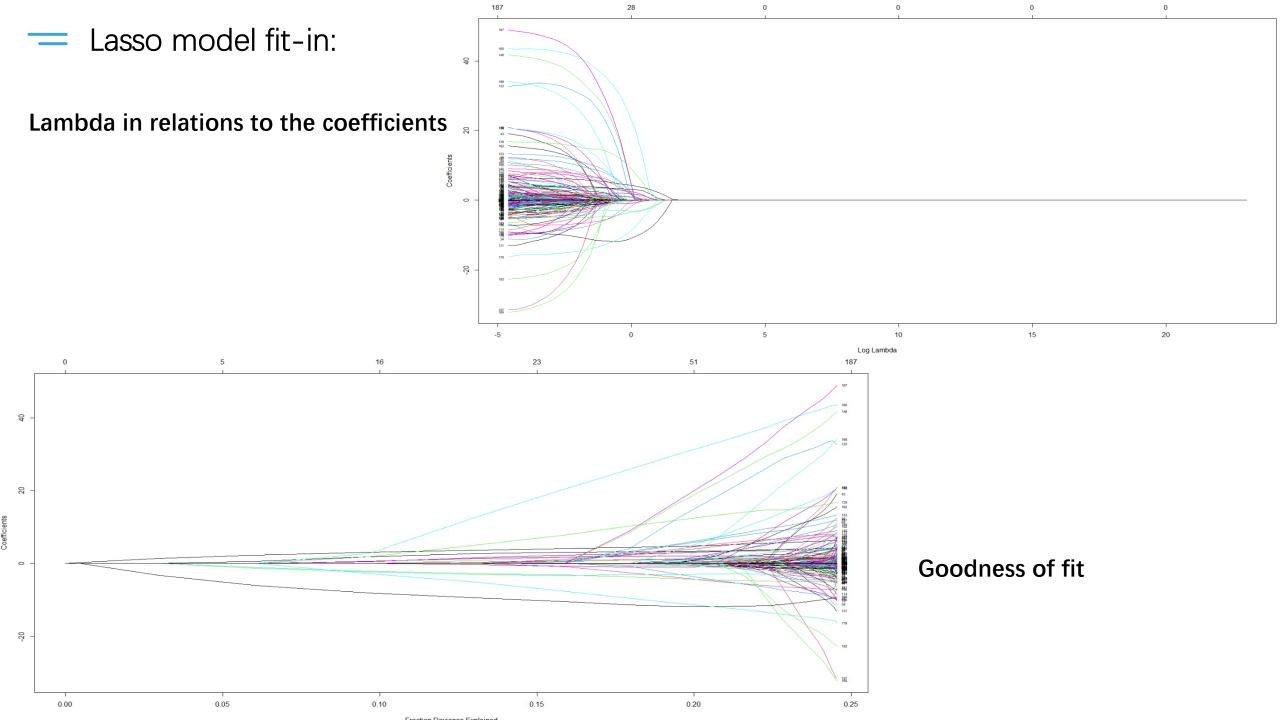
• λ denotes the amount of shrinkage.

Reason for applying these regularization methods:

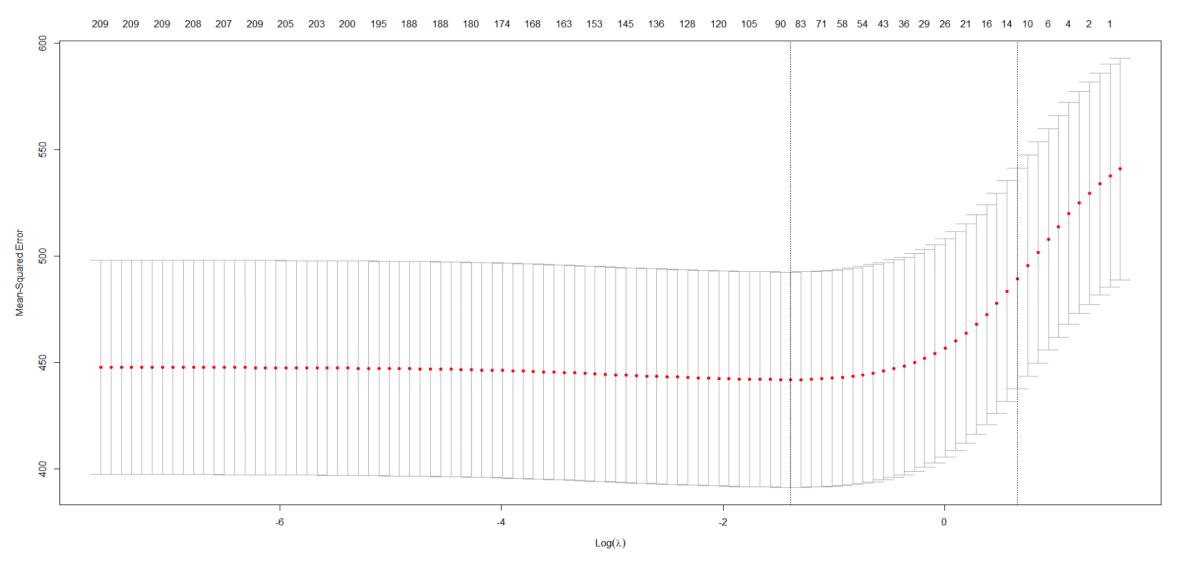
- Can be used to select important features from the dataset
- Shrinks the coefficients of less important features to exactly
- Independent features can be categorical, quantitative, or both

Methodology : technique for tunning parameter selection





= Lasso model fit-in: $\alpha = 1$, Choose the tuning parameter λ



The best λ value that minimizes the test MSE:0.2497.

Lasso model coefficient and forecasting accuracy

welshincident

welshhospital

incident_dateSaturday

locationIndustrial

locationMountain

mechnasim_of_injuryOther

highest_dgree_of_attendantFY / Other

ed_most_senior_doctor_datetimeSunday

ward1Emergency Admissions Unit (EAU)

ward10rthopaedic (inc. paediatric)

ward1Surgical ward (inc. paediatric)

ward2Emergency Admissions Unit (EAU)

ward3General acute (inc. paediatric)

first_doctor_see_patientsST 3+

nice_headinjuty_cretriaYes

type_of_transferTransfer Out

numbers_of_operations1

0.4675

3.7861

0.8636

0.0815

0.0443 locationFarm

-0.8640

-1.2427

-1.5611

-0.6047

1.3218

-6.7411

age4-12

-5.4383

4.3928

-0.3096

0.1278

2.4809

-0.3409

3.6575

1.5742 limbs

0.0012

-2.2338

-1.5079

-1.6907

2.5678

-0.9144

2.2512

-0.0265

-2.3682

18.5301

2.8540

-2.7834

11.3555

-3.1175

-0.2932

7.4505

0.2596

2.7558

ward2Geriatric

ward2Maxillofacial

ward2no_admission

ward2Plastic Surgery

ward3Cardiothoracic

ward2Spinal injuries unit

ward2Level 3

ward1Level 3

most_severeFace

ward1Cardiothoracic

ward1Maxillofacial

spine

ageover_80s

age13-18

locationRoad

mtc

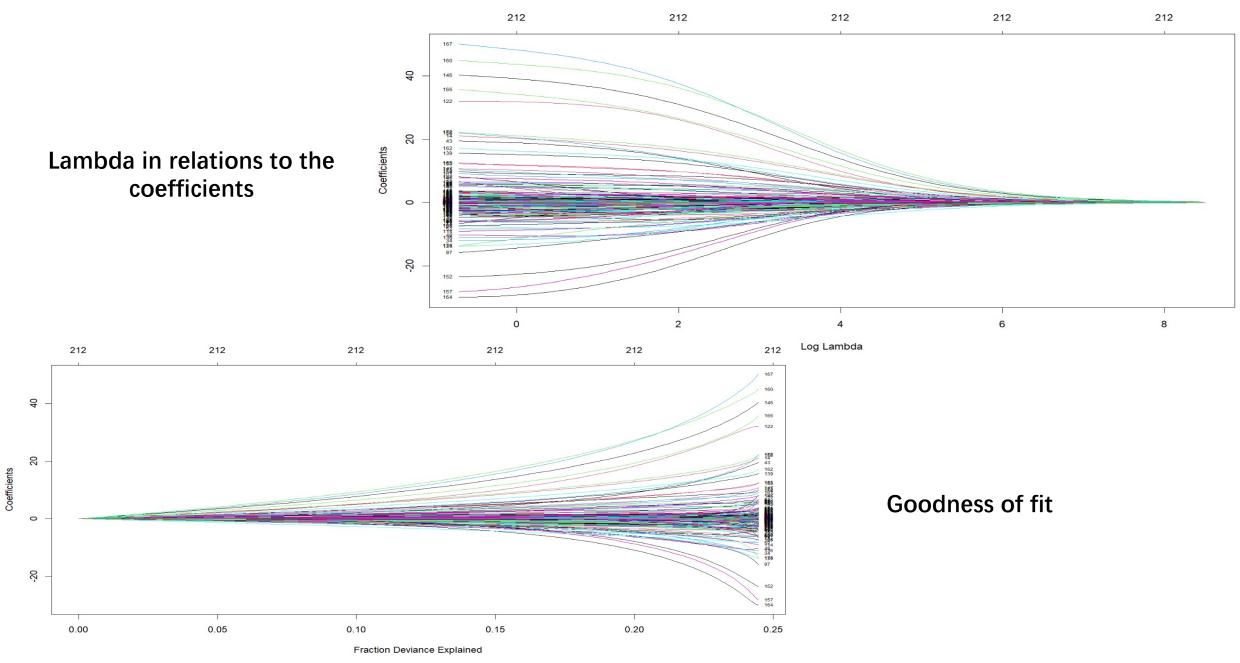
14.3225 welshresident 0.3566 Intercept:14.3225 countryid 0.0000 casemtc 2.9966 mechnasim_of_injuryFall less than 2m 1.7443 injury_typePenetrating -1.8064 locationHome 2.3702 locationInstitution 0.7224 locationOther Home (not patient's) 0.0592 arrival_modeHelicopter -0.0193highest_dgree_of_attendantParamedic 0.8745 age19-64 -4.2856 age75-79 1.2692 prealertYes -0.1074first_doctor_see_patientsConsultant -0.2690 first_doctor_see_patients_datetimeTuesday 0.5274 total_ed_intubvent 1.1272 totalnumbers_of_operations 4.7972 abdomen -0.0721 pelvis 1.3962 most_severeChest -0.4963most_severeLimbs 0.3518 ward1Coronary Care Unit (CCU) -0.0440 ward1Geriatric 4.0309 ward1Level 4 25.4329 ward1Medical ward (inc. Pallative care) 0.2882 ward1Spinal injuries unit 6.4835 ward2Cardiothoracic -1.4217 ward2General acute (inc. paediatric) 0.8541 ward2Level 2 -2.0063 ward2Major trauma ward 0.8589 ward2Medical ward (inc. Pallative care) ward2Neurosurgical rehabilitation ward 6.5495 ward2Neurosurgical ward 8.9831 ward20rthopaedic (inc. paediatric) 1.8711 ward2Post Anaesthetic Care Unit (PACU) -4.2429 ward2Surgical ward (inc. paediatric) -0.5874ward3Emergency Admissions Unit (EAU) -1.9384

(Intercept)

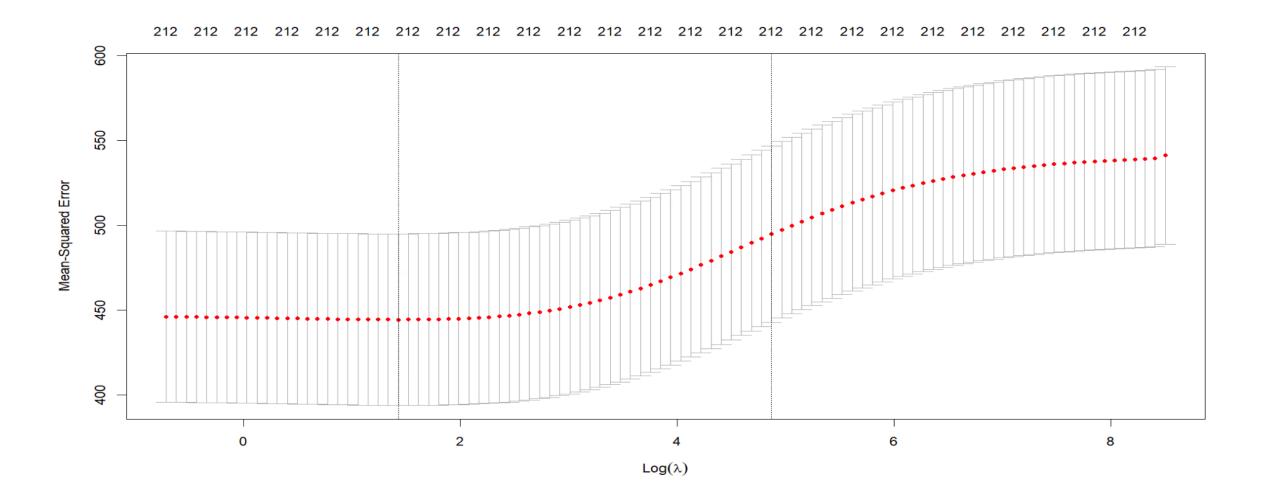
93 out of 214 variables with non-zero coefficients

Incl	uded features
wels	h_resident
wels	h_incident
wels	h_hospital
case	emtc
loca	tion
high	est_degree_of_attendent
age	
time	e for first_doctor_see_patients
type	e of transfer
ward	d type
mos	t_sever injury
statı	us of discharge
nice_	_head_injury_cretria
ed_p	oulse
ed_r	resp_rate
Ps14	1
case	e_known outcome
knov	wn outcome
preh	nospital_pulse
patie	ent-arrival_time
txa_l	location

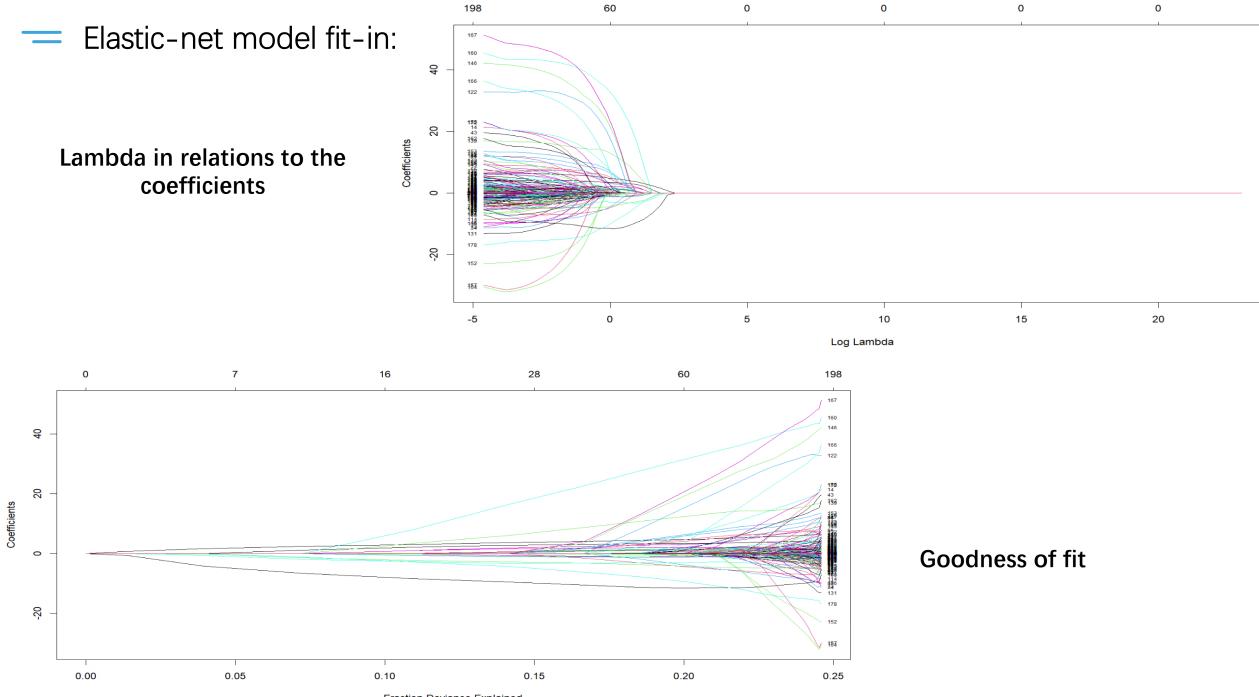
— Ridge model fit-in:



= Ridge model fit-in: $\alpha = 0$, Choose the tuning parameter λ

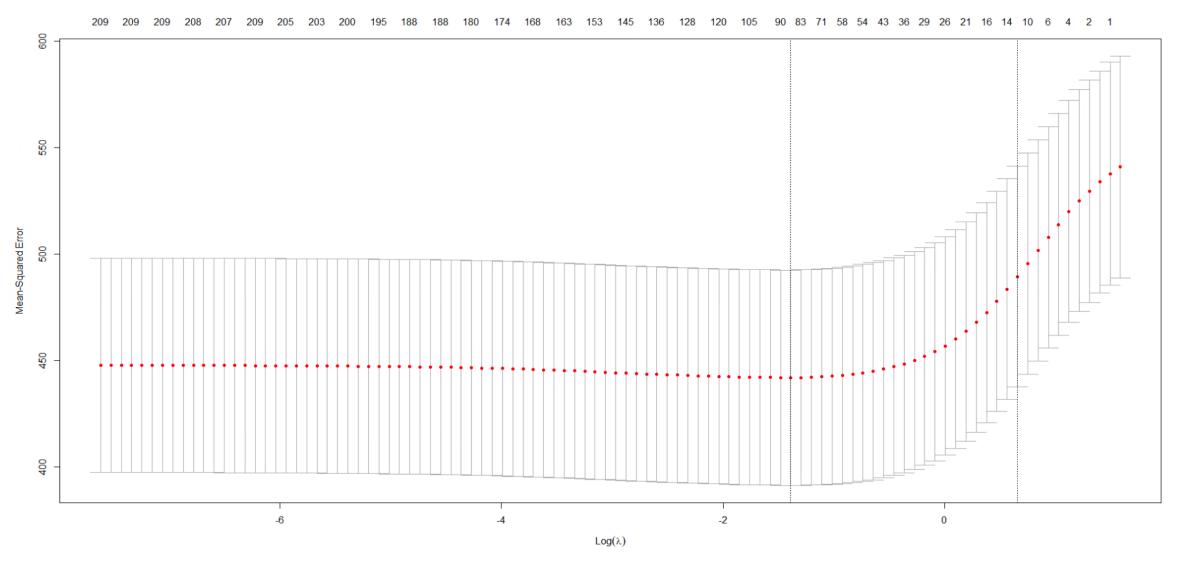


The best λ value that minimizes the test MSE:4.165675



Fraction Deviance Explained

= Elastic-net model fit-in: α =0.5, choose the tuning parameter λ



The best λ value that minimizes the test MSE:0.249725.

Elastic-net model coefficient and forecasting accuracy

iss

(Intercept) 21.1424 welshincident 0.1302 welshresident welshhospital Intercept:21.1424 0.0060 3,4932 countryid casemtc 0.0000 3.4191 mechnasim_of_injuryFall less than 2m mechnasim_of_injuryVehicle incident/collision 1.8320 -0.1335 injury_typePenetrating locationHome -1.18412.6084 locationIndustrial locationInstitution -0.03770.0534 locationMountain locationRoad -0.0196-0.0495highest_dgree_of_attendantParamedic age13-18 0.4358 -5.5660 age19-64 age4-12 -4.0895 -3.2629 age75-79 ageover_80s 0.4906 3.9858 ed_most_senior_doctor_datetimeSunday first_doctor_see_patientsConsultant -0.0144-0.0455 first_doctor_see_patients_datetimeTuesday nice_headinjuty_cretriaYes 0.0574 1.8266 total_ed_intubvent totalnumbers_of_operations 0.8956 4.5578 type_of_transferTransfer Out spine 1.4091 1.4369 pelvis most_severeChest 1.3191 -0.7630most_severeFace ward1Cardiothoracic -1.5028-0.8656 ward1Emergency Admissions Unit (EAU) ward1Geriatric -1.0023 1.6497 ward1Level 3 ward1Level 4 1.8368 16,4339 ward1Maxillofacial ward10rthopaedic (inc. paediatric) -0.0695 1.3335 ward1Surgical ward (inc. paediatric) ward1Spinal injuries unit 4,9603 -0.0256ward2Cardiothoracic ward2Geriatric -0.175017.3647 ward2Level 2 ward2Level 3 -0.27891.5933 ward2Medical ward (inc. Pallative care) ward2Maxillofacial -0.40805.3774 ward2Neurosurgical rehabilitation ward ward2Neurosurgical ward 5.0889 7.5630 ward2no_admission ward20rthopaedic (inc. paediatric) -2.8426 1.2598 ward2Spinal injuries unit ward2Surgical ward (inc. paediatric) 5.5021 -0.0392 ward3Geriatric ward3Level 3 28.9209 0.6762 ward3Medical ward (inc. Pallative care) ward3Neurosurgical rehabilitation ward 2.0958 3.8134 ward3no_admission ward3Neurosurgical ward 9.9236 -9.8171ward3Spinal injuries unit 4.9850 0.0993 status_of_dischargeDead ps14 -0.0553 -0.3480 casedied caseknownoutcome -11.9319 0.3416 ed_pulse ed_resp_rate 0.0111 0.0016

66 out of 214 variables with non-zero coefficients

	ed features
welsh_re	
welsh_in	cident
welsh_h	ospital
casemtc	
location	
highest_	degree_of_attendent
age	
time for	first_doctor_see_patients
type of t	ransfer
ward typ	De
most_se	ver injury
status of	f discharge
nice_hea	ad_injury_cretria
ed_pulse	9
ed_resp_	_rate
ps14	

= Revised-Elastic-net model: choose the tuning parameter $\alpha \& \lambda$

• Tune Length= $10 (\alpha \sim (0.1-1))$

alpha 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	lambda 0.002272555 0.005249897 0.012127944 0.028017123 0.064723189 0.149518960 0.345408190 0.797937719 1.843339624 4.258353613 0.002272555 0.005249897 0.012127944 0.028017123 0.064723189 0.149518960 0.345408190 0.797937719 1.843339624 4.258353613	RMSE 20.40848 20.40828 20.40360 20.39525 20.38304 20.36339 20.30316 20.31361 20.46778 20.40900 20.40544 20.39907 20.38822 20.37177 20.34106 20.30620 20.29808 20.38865 20.76912	Rsquared 0.19019952 0.19020938 0.19046074 0.19091230 0.19151337 0.19245845 0.19407586 0.19539403 0.19539691 0.19161455 0.19018402 0.19037503 0.19072218 0.19128934 0.19209747 0.19369168 0.19546250 0.19589803 0.19248992 0.17923987	MAE 11.51178 11.51155 11.50692 11.49798 11.48183 11.45094 11.39398 11.31600 11.26119 11.35845 11.51193 11.50886 11.50208 11.48900 11.46385 11.41593 11.33782 11.26577 11.29304 11.63437

1.0 0.002272555 20.40205 0.19055932 11.50474 1.0 0.005249897 20 39221 19110184 1.0 0.012127944 20.37741 0.19185900 11.47248 1.0 0.028017123 20.34850 0.19340751 11.43016 1.0 0.064723189 20.30983 0.19551112 11.35538 1.0 0.149518960 20.28919 0.19654588 0.345408190 1.020 35378 19293487 1.0 0.797937719 20.63470 0.17980237 1.0 1.843339624 21.51360 0.12552102 12.35212 4.258353613 22.44415 0.05091961 13.26945 1.0

• **RMSE** was used to select the optimal model using the smallest value

The final used for the model was $\alpha = 1$ and $\lambda = 0.149519$

Revised Elastic-net model coefficient and forecasting accuracy

Intercept weishincident 7.038 0.694 welshhospital welshresident 0.555 3.632 countryid mtc Intercept:7.038 2.256 0.233 casemtc incident_dateSaturday 1.920 0.457 mechnasim_of_injuryFall less than 2m mechnasim_of_injuryOther 1.627 0.809 injury_typePenetrating locationFarm -1.903 -1.462 locationHome locationIndustrial 2.276 -1.969locationMountain locationInstitution 1.226 -2.571 locationOther locationOther Home (not patient's) 0.448 0.360 locationRoad locationWater -0.746 -0.273 arrival_modeHelicopter arrival_modeOther -1.378 -0.073 highest_dgree_of_attendantFY / Other highest_dgree_of_attendantNo grade recorded 7.761 -0.471 highest_dgree_of_attendantParamedic highest_dgree_of_attendantST, 4+ -1.738 0.956 age13-18 age19-64 -7.102 -4.303 age4-12 age75-79 -6.460 1.687 ageover_80s prealertYes 4.584 -0.280ed_most_senior_doctorOther ed_most_senior_doctorST year unknown 0.289 0.006 ed_most_senior_doctor_datetimeSunday ed_most_senior_doctor_datetimeWednesday -0.426 0.118 first_doctor_see_patientsConsultant first_doctor_see_patientsST 3+ -0.320 0.350 nice_headinjuty_cretriaYes first_doctor_see_patients_datetimeTuesday 0.923 2.868 gcs total_ed_intubvent -0.019 1.334 numbers_of_operations1 totalnumbers_of_operations -1.213 5.076 type_of_transferTransfer Out face 7.921 -0.111abdomen spine -0.146 1.675 limbs. pelvis 1.398 0.105 most severeChest most severeFace -0.367 -2.305 most_severeLimbs ward1Cardiothoracic 0.711 -1.914ward1Emergency Admissions Unit (EAU) ward1Coronary Care Unit (CCU) -1.416-1.991ward1Geriatric ward1Level 3 5.257 2.825 ward1Level 4 ward1Maxillofacial 29.234 -0.883 ward1Medical ward (inc. Pallative care) ward1no_admission 0.881 -0.084 ward1Spinal injuries unit ward10rthopaedic (inc. paediatric) 2.711 7.226 ward2Cardiothoracic ward2Emergency Admissions Unit (EAU) -1.590-5.556 ward2General acute (inc. paediatric) ward2Geriatric 2.428 19.503 ward2Level 2 ward2Level 3 -2.651 4.001 ward2Level 3s ward2Major trauma ward 4.616 2.895 ward2Maxillofacial ward2Medical ward (inc. Pallative care) -3.242 7.576

Included features
welsh_resident
welsh_incident
welsh_hospital
casemtc
location
highest_degree_of_attendent
age
time for first_doctor_see_patients
type of transfer
ward type
most_sever injury
status of discharge
nice_head_injury_cretria
ed_pulse
ed_resp_rate
Ps14
case_known outcome
known outcome
prehospital_pulse
patient-arrival_time
txa_location
AIS maximum severity in Abdomen
gcs
arrival_mode
prealert

110 out of 214 variables with non-zero coefficients

= Evaluation of the model performance

Model \diamond	Rsquared	RMSE_values	
Linear Regression	0.1686	21.1628	
Ridge Regression	0.1857	20.9433	
Lasso Regression	0.1817	20.9957	
Elastic Regression	0.1825	20.9846	
Elastic Regression_r1	0.1965	21.8642	

Loss of some important time interval feature

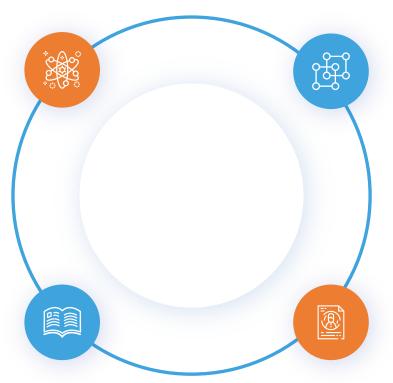
Plenty of outliers brings high difficulty in fit-in the forecasting model

Poor performance of the set of regularization forecasting model

Future research perspective

Acquire the latest dataset with complete time interval features for the modification of the forecasting model

A further literature review for identify length of stay forecasting predictors and methodologies



Explore other forecasting methodologies (GAM, deep learning)

Consider the impact of capacity variable (utilization of the medical resources) to the length of stay forecasting

