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Jutline

e What is a hierarchical and grouped time

series, and why they are essential in
forecasting?

o What are common approaches to forecast
hierarchical/groupoed time series?

o What is temporal aggregation, what are

different TA approaches and how it may affect
time series features?

» Given a high frequency time series (e.g.
daily), If we want a lower frequency
forecast(e.g. weekly), should we first forecast
and aggregate them or first aggregate timg /48
series and forecast?



Terminilogy

One time series

e Time granularity
o Temporal aggregation / temporal hierarchies

Collection of time series

o Cross-sectional aggregation / hierarchical / grouped
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Informing decisions in multiple levels
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Hierarchical time series

A hierarchical time series is a collection of several time series that are linked
together in a hierarchical structure (unique structure).
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Grouped time series

A grouped time series is a collection of time series that can be grouped together
in @ number of non-hierarchical ways.
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Grouped time series
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Hierarchical & Grouped time series
Ambulance attendance
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Australian tourism regions Australian tourism data

e Monthly data on visitor night from
1998 -- 2017

State
. New South Wales

. Victoria

. Queensland O 7 StateS

South Australia
L o 27 zones
. Northern Territory

. Western Australia o 75 reglonS

. Tasmania

|:| Australian Capital Territory

o Geographical hierarchy split by
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Australian tourism data
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Australian tourism data

Total domestic travel: Australia
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Australian tourism data

Overnight trips

AR ORWA w {W |
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Total domestic travel: by state

state

— NSW — QLD — TAS — WA
— NT — SA — VIC
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Australian tourism data

2000 Jan 2005 Jan
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Australian tourism data

Total domestic travel: South NSW by region
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How to forecast hierarchical/grouped series?

Hierarchical series Hierarchical forecasting
approaches

Total domestic travel: Australia




Optimal reconceiliation

e This approach involves first generating independent base forecast for each
series in the hierarchy.

» As these base forecasts are independently generated they will not be
“aggregate consistent” (i.e., they will not add up according to the hierarchical
structure).

e The optimal combination approach optimally combines the independent
base forecasts and generates a set of revised forecasts that are as close as
possible to the univariate forecasts but also aggregate consistently with the
hierarchical structure.

o Unlike any other existing method, this approach uses all the information
available within a hierarchy.
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Research gaps

e There is a need to examine empirically the validity of these theoretical
developments in supply chains

 Very little research has examined the association between characteristics of
time series and the performance of approaches

o The potential benefit of incorporating exogenous variables in a hierarchy
structure still needs to be examined

» Using probabilistic forecasting in hierarchies instead of point forecast in
supply chains

e The theoretical developments in this area do not support the count nature of
time series

 Investigating the benefit beyond forecast accuracy
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Temporal aggregation approaches

| Non-overlapping TA series | 12 | 24 16 17 |
| Nomn-aggregate series 2 1 9 3 1 20 10 1 5 10 2 5
Jan. | Feb. | March | Apnl | May | June | July | Aug | Sep. | Oct. | Nov. | Dec.
¢ l i Y v v
| Overlapping TA series | 12 [ 13 [ 13 ] 24 313116 16] 17 [ 17]
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Using TA (non-overlapping) to forecast
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Holirly time series: ambulance attendance
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Dally time series: ambulance attendance
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ambulance attendance

ime series
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ambulance attendance

ime series
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Quarterly time series: ambulance attendance
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Yearly time series: ambulance attendance
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Using information in multiple levels: MAPA

Standard
Approach

Multiple

Aggregation |

Prediction
Algorithm

@
A

] monthly model
data selection
monthly model
data | selection
temporal bimonthly model
aggregation data selection
tempaoral quarterly model
aggregation data selection
temporal yearly model
aggregation data selection
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Using information in multiple levels: temporal hierarchies
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Research gaps

o \We are still unclear when overlapping, non-overlapping or BU should be
used

Investigate the association between time series features and the
performance of each approach

Investigate TA on high frequency time series (e.g. hourly)

Linking forecast to utility measures

TA research has been built on the non-overlapping aggregation assumption,
the characteristics of time series when aggregated with an overlapping
approach have not been fully identified yet

» Using probabilistic forecast rather than only point forecast
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Experiment setup

e M4 competition data time series e Forecasting methods: ARIMA and
Exponential Smoothing State
o 24,000 Quarterly Space (ETS)
o 48,000 monthly  Accuracy measure: Mean Absolute
o 4,227 daily Scaled Error (MASE)

e Forecasting for lower frequency
time using higher frequency time
granularity (e.g. using monthly
series to forecast bi-monthly,
quarterly, yearly forecast)

e Time series features

o 42 features
o USe tsfeatures::tsfeatures()

Or feasts::features() in R

33/48



Aggregation Level

ETS ARIMA
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Aggregation Level
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Aggregation Level
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ETS ARIMA
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Experiment design

Temporally aggregate series
to Monthly, 2-Monthly, Quarterly,
4-Monthly, Biannual, Annual

Monthly original series
« Forecasting horizont for monthly level

(h=12, 24 and 60 steps-ahead)
« Forecasting horizont for annual level
(h=1, 2 and 5 steps-ahead)
. Forecasting models (ETS)

Forecast annual series Forecast original (monthly) series

Extracting series
characteristics

v

Temporally aggregate forecasts
to Monthly, 2-Monthly, Quarterly,
4-Monthly, Biannual, Annual

Calculating the forecasting accuracy

> : : Time series

Series forecasts characteristics

Rule generation (machine learning)




How time series features change with TA
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How time series features change with TA
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Direct-7.75

GAM - 6.63

LogReg - 6.63

Boosting - 6.61

Lasso - 6.55
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Feature

Feature Importance: Random Forests
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Wroks in progress Published recently

e Rostami-Tabar B. Hyndman J. R.e Mircetic, D., et al. (2021), "Forecasting
(2022), hierarchicgl count time hierarchical time series in supply chains:
serle.s.forecastlng IN emergency  an empirical investigation." International
medicine Journal of Production Research, 1-20.

« Rostami-Tabar B., Goltsos T. e Babai. M.Z., Boylan, J., Rostami-Tabar,

Wang, S. (2022), Overlapping and B. (2022), "Demand Forecasting in

non-overlapping temporal Supply Chains: A Review of Aggregation
aggre'gation: to combine or not to and Hierarchical Approaches",
combine International Journal of Production

. Rostami-Tabar, D. Mercetic (2022),R65€arch, Accepted (to appear).

Temporal aggregation and time
series features
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References for hierarchical forecasting

» Forecasting: Principles and Practice, Chapter 11 Forecasting hierarchical
and grouped time series

e ISF2021 Talk, Professor Rob J Hyndman, Ten years of forecast
reconciliation
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https://otexts.com/fpp3/hierarchical.html
https://youtu.be/5jB09R-sKOc

References for temporal aggregation forecasting

o An aggregate—disaggregate intermittent demand approach (ADIDA) to
forecasting: an empirical proposition and analysis. Journal of the
Operational Research Society.

o Improving forecasting via multiple temporal aggregation. International
Journal of Forecasting.

o Demand forecasting by temporal aggregation, Naval Research Logistics

e Forecasting with temporal hierarchies, European Journal of Operational
Research
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https://www.tandfonline.com/doi/full/10.1057/jors.2010.32?casa_token=FLX_iKeIDXcAAAAA%3ACXYWY6jICM_1_ayaadc8GXxN05kAFo5I_qqmt7XvBjEMTHBUTWLA8kziBWQhUVj-BdNWTwJnIw
https://www.sciencedirect.com/science/article/pii/S0169207013001477?casa_token=PhrGiXHJJzsAAAAA:-PU7metoOVL4G7avKR6NT9m5kzGNHPy5Lo14iEhVHqtju_L_hRUatM0M3CV3UilcBA47EuU
https://onlinelibrary.wiley.com/doi/full/10.1002/nav.21546?casa_token=wfP5AIk8wAQAAAAA%3A4skkyZgQCyVdftE194ZG_16CgG7CfL6-6_kb2Sqi0aiJ0aC4cWL4x2bmmRMPdupj4P4_9lihPLj3
https://www.sciencedirect.com/science/article/pii/S0377221717301911?casa_token=wVe_QYpCEFoAAAAA:LT-rFP_KTK8Wbr1iQnqpGpNXjKiocfoSBuM4-0SfYTEB_6njOQcELohyPLiuPQuSgEkstCc

e Slides and papers: www.bahmanrt.com
e Check out also www.f4sg.org
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